I/0 采集模块

NA8D4

隔离型 4 路数字量(DI)输入 8 路电流模拟量(4-20mA)输入 网络混合型智能采集器

使用说明

目 录

第1章	产品概述	. 3
1.1	概述	. 3
1.2	性能特点	. 3
1.3	技术参数	. 4
第2章	外观尺寸	. 5
2.1	产品外观	. 5
	2.2.1 前视图	. 5
	2.2.2 后视图	. 6
	2.2.3 侧视图	. 6
	2.2.4 顶视图	. 6
第3章	产品接线图	. 7
产品	品接线图	. 7
第4章	引脚说明及指示灯	. 8
4.1	引脚定义	. 8
4.2	LED 指示灯	. 8
第5章	软件操作	. 9
5.1	搜索 IO 模块	. 9
5.2	设置 IO 模块	. 9
5.3	测试 IO 模块	11
	5.3.1 模块作为服务器模式	11

	5.3.2 模块作为客户端模式1	١2
	5.3.3 开关量测试1	L 5
第6章	通讯协议及寄存器定义1	١7
6.1	通讯协议1	١7
	6.1.1 读线圈状态	١7
	6.1.2 写单个线圈状态1	8
	6.1.3 写多个线圈状态	8.
	6.1.4 读保持寄存器	١9
	6.1.5 写单个保持寄存器2	20
	6.1.6 写多个保持寄存器2	20
	6.1.7 错误码表	12
6.2	寄存器定义2	12
	6.2.1 NA8D4 寄存器	12
	6.2.3 浮点数说明	22
6.3	协议应用范例2	23
	6.3.1 读寄存器命令举例2	23
	6.3.2 读 DI 寄存器命令举例2	24
第7章	装箱清单	26

第1章 产品概述

1.1 概述

NA8D4 为网络型隔离混合智能采集器,具有 4 路干接点数字量输入,8 路电流型模拟量输入(量程为 0~20mA),采用单端输入设计。电源及 RJ-45 接口均加入防雷保护电路,产品稳定可靠;丰富的指示灯方便调试,运行状态一目了然;采用标准 Modbus TCP 协议,方便系统集成商、工程商使用;通过 TCP/IP 网络即可实现对远程数字量和模拟量设备的数据采集。DI 输入通常有接入接近开关、机械开关、按钮、继电器、光电开关、烟感、水浸、红外探测器、气体泄漏报警器等数字量开关设备;AI 下层设备通常有电压变送器、电流变送器、温度计、湿度计,压力计、流量计、阀门开度、PH 计、电导计等模拟量设备。

针对工业应用,RJ-45 通讯接口采用光电隔离设计,避免工业现场信号对通讯接口的影响,具有良好的兼容性及稳定性;标准 Modbus TCP 通讯协议及常用功能码,使得用户可以更加轻松实现与支持 Modbus TCP 协议的 PLC 等设备和系统的整合应用;提供协议和示例代码,使您的二次开发更加灵活、简便、高效。

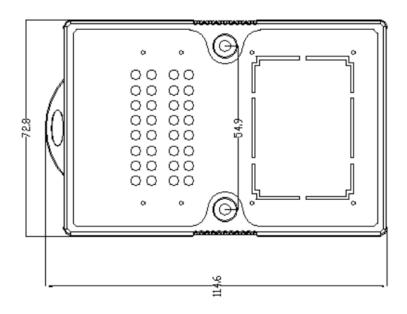
本产品广泛应用于: 医疗、工矿产品开发; 工控教学应用远程通讯; 机房动力环境监控; 移动数据采集站; 智能楼宇控制数据、安防工程等应用系统; 机械、消防、石化、建筑、电力、交通等各行业 TCP/IP 网络工业自动化控制系统等领域。

1.2 性能特点

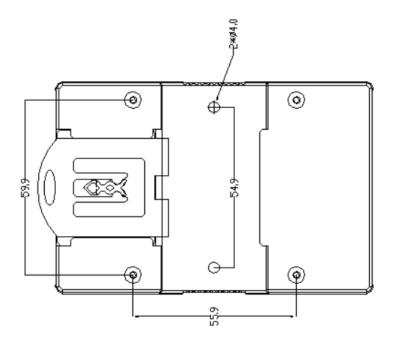
- 8 路模拟量电流输入
- AI 输入测量范围: 0~20mA
- 16 位分辨率
- 精度 1‰
- AI 输入通道采取单端输入
- AI 输入与系统采用光电隔离
- AI 通道具有防雷保护功能
- 4 路干接点数字量输入(DI)
- DI 输入范围: 0~5V
- 双硬件看门狗,绝不死机

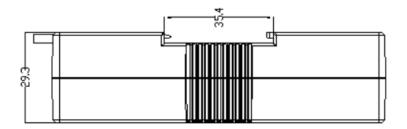
- 采用 32 位 ARM 嵌入式 CPU, 高性能低功耗
- 采用 Modbus TCP 通信协议,支持客户端和服务器模式
- 丰富的的指示灯,方便调试
- RJ-45 通信接口提供防雷保护
- 电源具有过流、过压、防反接及防雷保护
- 宽电源电压设计
- 工业级温度范围,应对严苛现场环境
- 标准导轨安装或螺钉固定

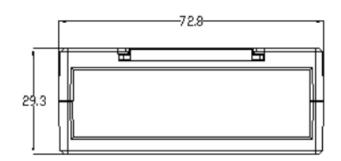
1.3 技术参数


	1	
	DI	4 路干接点
	触发电压	小于 1V 为逻辑 1, 大于 2.5V 为逻辑 0
DI 接口	触发电流	小于 1mA
	防雷防护	600W
	端口过压保护	30V
	AI	8 路单端输入
	AI 分辨率	16bit
	AI 量程	0~20mA
	精度	1‰
模拟量接口	采集速度	100Hz
	AI 输入阻抗	200Ω
	防雷防护	200W
	端口过压保护	30V
	电源隔离度	1500V
	通讯接口	RJ-45
	速率	10/100M 自适应
网络洛萨会数	通讯协议	Modbus TCP
网络通信参数	嵌入协议	ARP, ICMP, IP, TCP, UDP, DHCP, DNS
	设置方式	设置程序
	防雷防护	250W
	电源规格	6-28VDC (推荐 12VDC)
电源参数	功耗	60mA@12VDC
	防雷防护	3000W
T lle IT like	工作温度、湿度	-40~85℃,5~90%RH,不凝露
工作环境	储存温度、湿度	-60~125℃,5~90%RH,不凝露
++ //-	尺寸	110mm*75mm*30mm
其他	保修	2年质保
L		

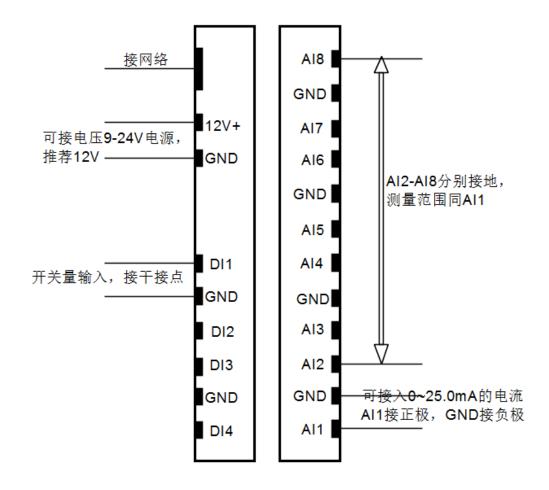
第2章 外观尺寸


2.1 产品外观


2.2.1 前视图


2.2.2 后视图

2.2.3 侧视图



2.2.4 顶视图

第3章 产品接线图

产品接线图

第4章 引脚说明及指示灯

4.1 引脚定义

引脚定义	说明
VS+	电源正
GND	电源负
NET	RJ-45 接口
DI(GND)	数字量信号输入公共端
DI1~4	数字量信号输入端
AI(GND)	模拟量信号输入公共端
AI1~8	模拟量信号输入端

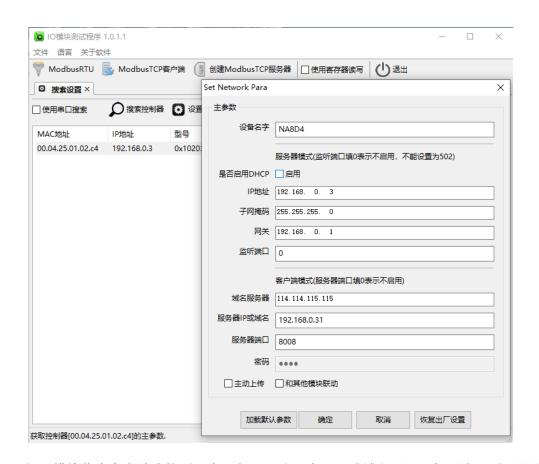
4.2 LED 指示灯

NA8D4 外设 8 个状态 LED 指示灯,能够准确及时报告设备的工作状态,为工程的施工和调试带来极大的方便。其说明如下表所示:

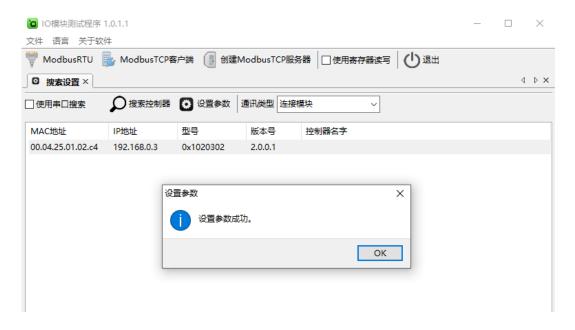
指示灯	指示灯说明
PWR	电源指示灯(亮:有电源连接;灭:无电源连接)
RUN	闪烁:正常运行;常亮或者不亮:工作不正常
LINK	亮:表示有网络连接,闪烁:表示有网络数据收发
SPD	亮:表示 100M 网速,不亮:表示 10M 网速
DI1~DI4	亮: 对应 DI 有输入

第5章 软件操作

本软件为无安装的绿色测试软件,拷贝过来即可使用,软件只对设备产品进行配置和测试,不做其他用途,在使用软件对IO模块进行操作时,请保证模块正常加点并连接好通讯线缆。


5.1 搜索 IO 模块

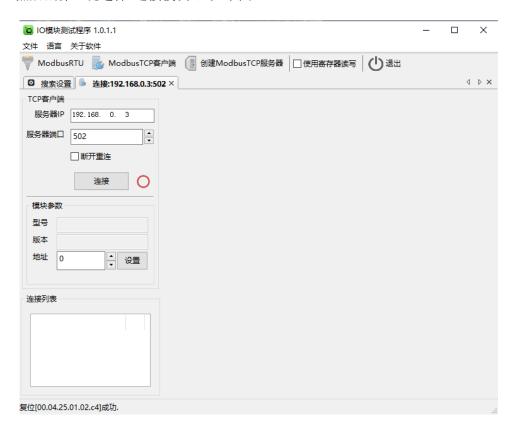
打开 IO 模块测试程序,该程序默认"使用网络搜索",点击"搜索控制器"图标,局域网内的所有模块会展示出设备列表框中,页面会显示设备的参数包括 MAC 地址,IP 地址(IO 模块默认出厂IP 地址为 192.168.0.3),型号,版本号。如下图:



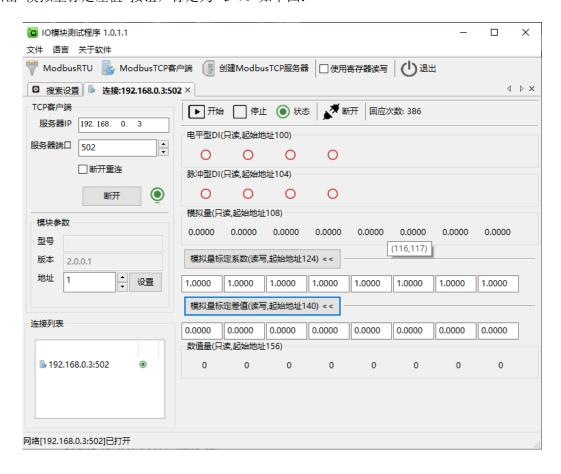
5.2 设置 IO 模块

选中模块,双击或者点击"设置参数"图标(双击设备列表中的模块会把 IP 地址自动导入"Set Network Para"界面,使用"Set Network Para"界面之前请确保要测试的模块 IP 地址与电脑在同一网段),该模块的默认参数会显示于"Set Network Para"界面中,按需要修改其参数,如下图:

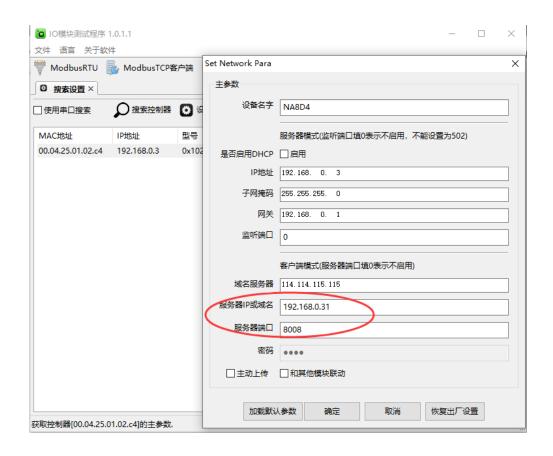
如果模块作为客户端连接到一个服务器,则"服务器IP或域名"和"服务器端口"也要设置,再点击"确定"图标,模块会保存新的参数并重启。如下图:


5.3 测试 IO 模块

5.3.1 模块作为服务器模式

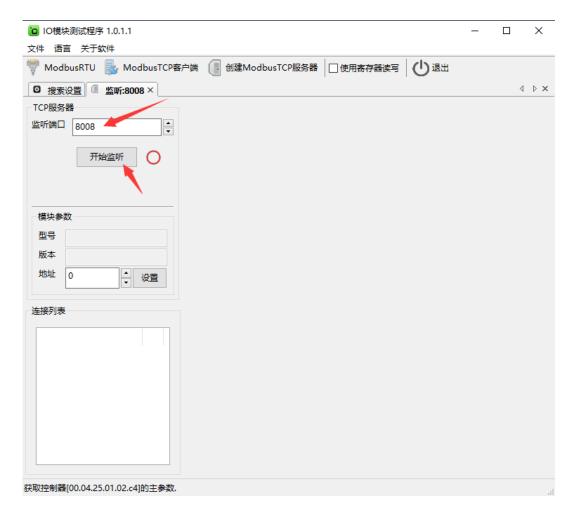

选中要设置的模块,点击"Modbus TCP 客户端"图标或者鼠标右键选择"连接模块",如下图:

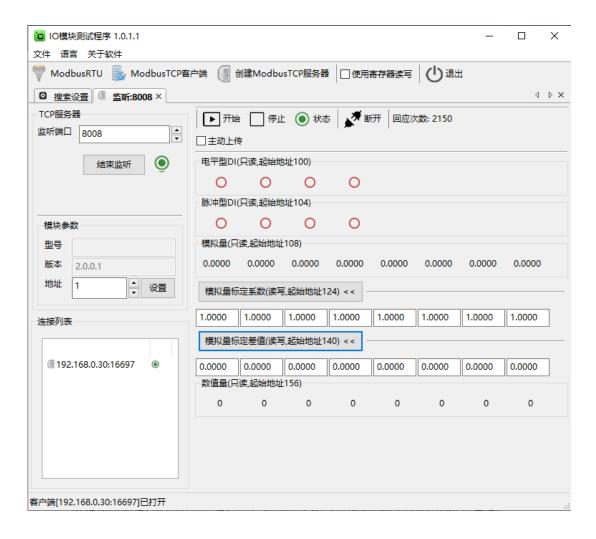
然后鼠标左键选择"连接模块",如下图:


点击"连接"图标,模块网络连接建立之后,"连接"按钮会变为"断开"按钮,同时测试界面左半部分显示为设备的 TCP 客户端参数(IP 地址(默认 192.168.0.3),服务器端口(默认 502)),模块参数(型号,版本,地址),连接列表会显示所有该局域网的 IO 网络模块。右半边测试软件会根据产品型号自动显示所对应的测试界面,显示为采集 AI 的数值,AI 状态为只读值,显示模拟值和数值量,可以很直观地看到它各路的状态(采集集 0~20mA 模拟量值时,模拟量标定系数默认为"1",模拟量标定差值默认为"0";采集 4~20mA 模拟量值时,点击"模拟量标定系数"按钮,标定为"1.25",点击"模拟量标定差值"按钮,标定为"-5")。如下图:

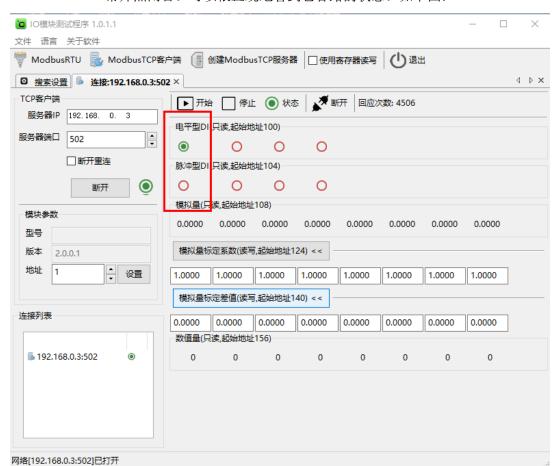
5.3.2 模块作为客户端模式

模块作为客户端连接到一个服务器,需设置"服务器IP或域名"和"服务器端口"参数,例:服务器IP或域名设为"192.168.0.31",服务器端口设为"8008",再点击"确定"图标,模块会保存新的参数并重启。如下图:


备注:如果在广域网中使用IO模块,需设置"域名服务器"参数。


选中要设置的模块,点击"创建 Modbus TCP 服务器"图标或者鼠标右键选择"监听模块",如下图:

然后鼠标左键选择"监听模块",如下图:



监听端口输入"8008"(注意:此端口号一定和服务器端口号一致,否则不能通讯),点击"开始监听"图标,模块网络连接建立之后,"开始监听"按钮会变为"结束监听"按钮,同时测试界面左半部分显示为设备的 TCP 服务器参数(监听端口"8008"),模块参数(型号,版本,地址),连接列表会显示所有该局域网的 IO 网络模块。右半边测试软件会根据产品型号自动显示所对应的测试界面,显示为采集 AI 的数值,AI 状态为只读值,显示模拟值和数值量,可以很直观地看到它各路的状态(采集 0~20mA 模拟量值时,模拟量标定系数默认为"1",模拟量标定差值默认为"0";采集 4~20mA模拟量值时,点击"模拟量标定系数"按钮,标定为"1.25",点击"模拟量标定差值"按钮,标定为"-5")。如下图:

5.3.3 开关量测试

点击"连接"图标,模块网络连接建立之后,"连接"按钮会变为"断开"按钮,同时测试界面左半部分显示为设备的 TCP 客户端参数(IP 地址(默认 192.168.1.30),服务器端口(默认 502)),模块参数(型号,版本,地址),连接列表会显示所有该局域网的 IO 网络模块。测试界面右半部分为采集 DI 和 DO 的数值,DI 状态为只读值,红色色表示断开,绿色表示接通。DO 的各路状态均为读写值,可以很方便地改变其状态。写入值 0 表示常闭点闭合而常开点断开,写入值 1 表示常闭点断开而常开点闭合;上电状态 0 表示加电时常闭点闭合而常开点断开,上电状态 1 表示加电时常闭点断开而

常开点闭合。可以很直观地看到它各路的状态。如下图:

第6章 通讯协议及寄存器定义

6.1 通讯协议

遵循标准 MODBUS TCP 协议,协议格式如下:

传输标志	协议标志	长度	单元标志	功能码	数据
2 字节	2 字节	2 字节	1 字节	1 字节	N 字节

传输标志: MODBUS 请求和响应传输过程中序列号,客户端生成,应答时复制该值,高位在前;

协议标志: Modbus 协议默认为 0, 高位在前;

长度:后续字节的长度,高位在前;

单元标志: 从机标志 (从机地址);

功能码:读写 IO 模块 DIO 状态的功能码;

数据: 根据功能码和寄存器个数确定数据的大小;

6.1.1 读线圈状态

功能码: 0x01

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1字节,内容为0x01
起始寄存器地址	2字节,高位在前
寄存器个数	2字节,高位在前

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x01
	1字节,从读寄存器个数计算得出:
	如果寄存器个数被8整除:
字节数	字节数 = 寄存器个数/8
	如果寄存器个数不能被8整除:
	字节数 = 寄存器个数/8+1
数据	每一位表示一路 DIO 的状态,第一个字节的第一位表示起
刻功	始寄存器的状态,依次类推

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x01
数据	1字节,错误码,见错误码表

6.1.2 写单个线圈状态

功能码: 0x05

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1字节,内容为0x05
寄存器	2 字节, 高位在前
寄存器值	2 字节, 高位在前, 写 0x0000 表示输出 0, 写 0xff00 表示输出 1

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x05
寄存器	2 字节,高位在前
寄存器值	2 字节, 高位在前, 回应 0x0000 表示 0, 回应 0xff00 表示 1

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1字节,内容为0x80+0x05
数据	1字节,错误码,见错误码表

6.1.3 写多个线圈状态

功能码: 0x0f

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x0f
起始寄存器	2 字节,高位在前
寄存器个数	2 字节,高位在前
	1字节,字节数从寄存器个数计算得出:
字节数	如果寄存器个数被8整除:
	字节数 = 寄存器个数/8

	如果寄存器个数不能被 8 整除: 字节数 = 寄存器个数/8+1
数据	每一位表示一路线圈状态(即是 DO 或其配置),第一个字 节的第一位表示起始寄存器的状态

IO 模块正常应答报文:

从设备地址	1字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x0f
起始寄存器	2 字节, 高位在前
寄存器个数	2 字节, 高位在前

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x0f
数据	1字节,错误码,见错误码表
CRC16 校验	2字节,低位在前

6.1.4 读保持寄存器

功能码: 0x03

上位机报文:

从设备地址	1字节,内容为0x00-0xff
功能码	1 字节, 内容为 0x03
起始寄存器地址	2 字节,高位在前
寄存器个数	2 字节,高位在前

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x03
字节数	1字节,即是寄存器个数 x2,因为每个保持寄存器两个字 节
数据	各个保持寄存器的值,每个保持寄存器占用2字节,并且高位在前

IO 模块异常应答报文:

功能码	1 字节,内容为 0x80+0x03
数据	1字节,错误码,见错误码表

6.1.5 写单个保持寄存器

功能码: 0x06

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1字节,内容为0x06
寄存器地址	2 字节, 高位在前
寄存器值	2字节,高位在前

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节, 内容为 0x06
寄存器地址	2 字节,高位在前
寄存器值	2 字节,高位在前

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x06
数据	1字节,错误码,见错误码表

6.1.6 写多个保持寄存器

功能码: 0x10

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x10
起始寄存器地址	2 字节,高位在前
寄存器个数	2 字节,高位在前
字节数	1字节,即是寄存器个数 x2,因为每个保持寄存器占用 2
	个字节
数据	各个保持寄存器的值,每个保持寄存器占用 2 字节,并且
	高位在前

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节, 内容为 0x10
起始寄存器地址	2 字节, 高位在前
寄存器个数	2字节,高位在前

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x10
数据	1字节,错误码,见错误码表

6.1.7 错误码表

错误码	意义
0x01	无效功能码
0x02	无效寄存器地址
0x03	寄存器值无效
0x04	从机设置错误
0x05	ACK,一般用于长时间执行某项任务
0x06	从机忙状态
0x07	NEGATIVE ACK
0x08	MEMORY PARITY ERROR

6.2 寄存器定义

6.2.1 NA8D4 寄存器

寄存器地址	功能	种类	读写 状态	取值范围
100	DI 电平输入 1	线圈状态	只读	0表示无输入,1表示有输入
101	DI 电平输入 2	线圈状态	只读	0表示无输入,1表示有输入
102	DI 电平输入 3	线圈状态	只读	0表示无输入,1表示有输入
103	DI 电平输入 4	线圈状态	只读	0表示无输入,1表示有输入
104	DI 脉冲输入 1	线圈状态	只读	0表示无输入,1表示有输入
105	DI 脉冲输入 2	线圈状态	只读	0表示无输入,1表示有输入
106	DI 脉冲输入 3	线圈状态	只读	0表示无输入,1表示有输入
107	DI 脉冲输入 4	线圈状态	只读	0表示无输入,1表示有输入
100	DI 电平输入 1	保持寄存器	只读	0表示无输入,1表示有输入
101	DI 电平输入 2	保持寄存器	只读	0表示无输入,1表示有输入
102	DI 电平输入3	保持寄存器	只读	0表示无输入,1表示有输入
103	DI 电平输入 4	保持寄存器	只读	0表示无输入,1表示有输入
104	DI 脉冲输入 1	保持寄存器	只读	0表示无输入,1表示有输入

105	DI 脉冲输入 2	保持寄存器	只读	0表示无输入,1表示有输入
106	DI 脉冲输入 3	保持寄存器	只读	0表示无输入,1表示有输入
107	DI 脉冲输入 4	保持寄存器	只读	0表示无输入,1表示有输入
108	电流测量值1	保持寄存器	读写	0~25.0MA, 浮点数表示
110	电流测量值 2	保持寄存器	读写	0~25.0MA, 浮点数表示
112	电流测量值3	保持寄存器	读写	0~25.0MA, 浮点数表示
114	电流测量值 4	保持寄存器	读写	0~25.0MA,浮点数表示
116	电流测量值 5	保持寄存器	读写	0~25.0MA,浮点数表示
118	电流测量值 6	保持寄存器	读写	0~25.0MA,浮点数表示
120	电流测量值 7	保持寄存器	读写	0~25.0MA,浮点数表示
122	电流测量值 8	保持寄存器	读写	0~25.0MA,浮点数表示
124	系数标定1	保持寄存器	读写	0~65535
126	系数标定 2	保持寄存器	读写	0~65535
128	系数标定3	保持寄存器	读写	0~65535
130	系数标定 4	保持寄存器	读写	0~65535
132	系数标定 5	保持寄存器	读写	0~65535
134	系数标定 6	保持寄存器	读写	0~65535
136	系数标定7	保持寄存器	读写	0~65535
138	系数标定 8	保持寄存器	读写	0~65535
140	差值标定1	保持寄存器	读写	0~25.0MA
142	差值标定 2	保持寄存器	读写	0~25.0MA
144	差值标定3	保持寄存器	读写	0~25.0MA
146	差值标定 4	保持寄存器	读写	0~25.0MA
148	差值标定 5	保持寄存器	读写	0~25.0MA
150	差值标定 6	保持寄存器	读写	0~25.0MA
152	差值标定7	保持寄存器	读写	0~25.0MA
154	差值标定8	保持寄存器	读写	0~25.0MA
156	整数电流测量值1	保持寄存器	只读	0~25000, 正整数表示
157	整数电流测量值 2	保持寄存器	只读	0~25000, 正整数表示
158	整数电流测量值3	保持寄存器	只读	0~25000, 正整数表示
159	整数电流测量值 4	保持寄存器	只读	0~25000, 正整数表示
160	整数电流测量值 5	保持寄存器	只读	0~25000, 正整数表示
161	整数电流测量值6	保持寄存器	只读	0~25000, 正整数表示
162	整数电流测量值7	保持寄存器	只读	0~25000, 正整数表示
163	整数电流测量值8	保持寄存器	只读	0~25000,正整数表示

6.2.3 浮点数说明

浮点数数据格式与 IEEE-754 标准(32)有关,长度 32 位。四个字节的浮点数传送顺序为先低字节后高字节。浮点数格式见表 A8:

表 A8 浮点数格式

D31	D30~D23	D22~D0
浮点数符号位	阶码	尾数

浮点数的数值= $((-1)^{\frac{\beta+\beta}{\alpha}}) \times 1.$ 尾数× $2^{\frac{(\beta+\beta-127)}{\alpha}}$

浮点数需要使用两个寄存器表示,假设电流测量 1 的值为 10.56mA,则在内存表示的字节如下:

低内存地址 高内存地址

在使用两个寄存器表示则是:

寄存器 1: 0x4128

寄存器 2: 0xF5C3

因为在传输过程中保持寄存器需要高位在前,则传输的字节顺序为:

0x41	0x28	0xF5	0xC3
低内存地址			高内存地址

6.3 协议应用范例

6.3.1 读寄存器命令举例

以下为读取 IO 模块的 8 路电流浮点数举例,假定 8 路电流各个电流值分别为: 1.20, 2.45, 5.10, 12.12, 10.34, 4.12, 6.43, 21.43, IO 模块地址为 1,则上位机发送的数据如下(十六进制表示):

00 01 00 00 00 06 <mark>01 03 00 6c</mark> 00 10

- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 06 后续字节长度, 6 个字节;
- 01 IO 模块的地址, 1 字节;
- 03 功能码:读取线圈状态的功能码;
- <mark>00 6c</mark> 起始寄存器,即是寄存器 108;
- 00 10 寄存器个数, 16 个, 每个浮点数占用了两个寄存器;

如果一切正常,则从机应答的数据如下(十六进制表示):

00 01 00 00 00 23 01 03 32 3f 99 99 9a 40 1c cc cd 40 a3 33 33 41 41 eb 85 41 25 70 a4 40 83 d7 0a 40 cd c2 8f 41 ab 70 a4

- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 23 后续字节长度, 35 个字节;
- **01** IO 模块的地址,1 字节;
- 03 功能码: 读取线圈状态的功能码;
- 32 所有寄存器总共占用的字节数;

3f 99 99 9a 40 1c cc cd 40 a3 33 33 41 41 eb 85 41 25 70 a4 40 83 d7 0a 40 cd c2 8f 41 ab 70 a4 分别表示各路电流值,每 4 个字节表示一路,例如 3f 99 99 9a 表示第一路的电流为 1.20,以此类推。

6.3.2 读 DI 寄存器命令举例

以下为读取 IO 模块 4 路电平型 DI 和 4 路脉冲型 DI 的命令举例,假定 IO 模块的地址为 1,寄存器起始地址为 100(十六进制为 0x64),个数为 8,上位机发送的数据如下(十六进制表示):

00 01 00 00 00 06 01 01 00 64 00 08

各项分别表示:

- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 0006 后续字节长度,6个字节;
- 01 IO 模块的地址, 1 字节;
- 01 功能码: 读取线圈状态的功能码;
- 00 64 起始寄存器,即是寄存器 100;
- 00 08 需要读取的寄存器个数,这里举例为 8 路,4 路电平型 DI和 4 路脉冲型 DI;

从机应答举例,假定 4 路电平 DI 状态状态分别: 1001, 脉冲型 DI 状态是电平型 DI 状态的脉冲表示,瞬间值为: 1001,则回应的数据如下(十六进制表示):

00 01 00 00 00 04 01 01 01 99

各项分别表示:

00 01 传输标志,序列号,表示 0x0001;

- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 04 后续字节长度, 4 个字节;
- 01 IO 模块的地址, 1 字节;
- 01 功能码: 读取线圈状态的功能码;
- 01 字节数,因为是4个寄存器,所以字节数=寄存器个数/8+1=1;
- 99 各个寄存器的值,从低位开始对应的电平 DI 的第一路;

第7章 装箱清单

序号	名称	数量	单位	备注
1	主设备 NA8D4	1	台	
2	产品简易说明书	1	张	
3	合格证	1	张	